使用池进行for循环的多处理



有人能向我解释一下我是如何重写这些代码以使用池更快地运行的吗?很抱歉问这个问题,但我是一个初学者,我花了很多时间尝试,但不幸的是我没能弄清楚。

for i in constituents:
print(i) # print out the ticker so we know the downloading progress
prc = yf.download(i, interval="1d", start=start_date, end=end_date)
prc = pd.DataFrame(prc['Adj Close']) # select adjusted close price only
prc.columns = [i] # rename the column with the ticker of the stock
try:
df_prc = pd.concat([df_prc, prc], axis=1) # if the dataframe already exists, join the newly downloaded data to the existing table
except:
df_prc = prc # create the dataframe for the first ticker

stk = yf.Ticker(i)

try:
stk.info['floatShares']
except:
stk.info['floatShares'] = None
try:
stk.info['sharesOutstanding']
except:
stk.info['sharesOutstanding'] = None
if stk.info['floatShares']:
mcap = prc * stk.info['floatShares']
elif stk.info['sharesOutstanding']:
mcap = prc * stk.info['sharesOutstanding']
else:
mcap = prc * ((stk.info['marketCap'])/(stk.info['previousClose']))
try:
df_mcap = pd.concat([df_mcap, mcap], axis=1)
except:
df_mcap = mcap

此外,我想提供在我发布之前运行的代码,以澄清我的问题:

import yfinance as yf
import pandas as pd
start_date = "2021-01-04"
end_date = "2021-11-29"
idx = "^STOXX50E"

Index = yf.download(idx, # ticker
interval="1d", # daily frequency
start=start_date, end=end_date) # sampling period
Index = pd.DataFrame(Index['Adj Close'].rename(idx)) # select adjusted close price
page = pd.read_html('https://en.wikipedia.org/wiki/EURO_STOXX_50')
constituents = page[2]['Ticker'] # we only need tickers
constituents.pop(46) # Ticker UMG.AS is removed because otherwise the for loop produces an error

我使用以下代码将运行时间从386秒减少到17秒。请注意,我必须导入模块ssl并发出ssl._create_default_https_context = ssl._create_unverified_context,以克服从pd.read_html()方法调用中收到的SSL证书错误。

import yfinance as yf
import pandas as pd
from multiprocessing.pool import ThreadPool
from functools import partial
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
start_date = "2021-01-04"
end_date = "2021-11-29"
def process_constituent(data, constituent):
prc = pd.DataFrame(data[constituent]['Adj Close']) # select adjusted close price only
prc.columns = [constituent] # rename the column with the ticker of the stock
stk = yf.Ticker(constituent)
try:
stk.info['floatShares']
except:
stk.info['floatShares'] = None
try:
stk.info['sharesOutstanding']
except:
stk.info['sharesOutstanding'] = None
if stk.info['floatShares']:
mcap = prc * stk.info['floatShares']
elif stk.info['sharesOutstanding']:
mcap = prc * stk.info['sharesOutstanding']
else:
mcap = prc * ((stk.info['marketCap'])/(stk.info['previousClose']))
return mcap
def process_constituents(constituents):
# Download all the tickers:
data = yf.download(
tickers = ' '.join(constituents),
interval='1d',
start = start_date,
end = end_date,
group_by = 'ticker',
adjust=False,
threads = True,
proxy = None
)
pool = ThreadPool(len(constituents))
for idx, mcap in enumerate(pool.imap(partial(process_constituent, data), constituents)):
if idx == 0:
df_mcap = mcap
else:
df_mcap = pd.concat([df_mcap, mcap], axis=1)
return df_mcap

def main():
idx = "^STOXX50E"
Index = yf.download(idx, # ticker
interval="1d", # daily frequency
start=start_date, end=end_date) # sampling period
Index = pd.DataFrame(Index['Adj Close'].rename(idx)) # select adjusted close price
page = pd.read_html('https://en.wikipedia.org/wiki/EURO_STOXX_50')
constituents = page[2]['Ticker'] # we only need tickers
constituents.pop(46) # Ticker UMG.AS is removed because otherwise the for loop produces an error
df_mcap = process_constituents(constituents)
print(df_mcap)
if __name__ == '__main__':
main()

打印:

[*********************100%***********************]  1 of 1 completed
[*********************100%***********************]  49 of 49 completed
ADS.DE      ADYEN.AS         AD.AS         AI.PA  ...        TTE.PA         DG.PA        VOW.DE        VNA.DE
Date                                                                ...
2021-01-04  5.083322e+10  4.880933e+10  2.414267e+10  6.200227e+10  ...  8.326552e+10  3.746300e+10  3.842743e+10  3.322534e+10
2021-01-05  4.983515e+10  4.800875e+10  2.403104e+10  6.134340e+10  ...  8.545638e+10  3.682896e+10  3.849667e+10  3.338207e+10
2021-01-06  5.019652e+10  4.548888e+10  2.411223e+10  6.147971e+10  ...  8.921219e+10  3.824197e+10  3.886594e+10  3.203872e+10
2021-01-07  4.964585e+10  4.500328e+10  2.407163e+10  6.195684e+10  ...  9.018724e+10  3.830537e+10  3.946601e+10  3.183722e+10
2021-01-08  5.078160e+10  4.610573e+10  2.400059e+10  6.232034e+10  ...  9.024743e+10  3.879449e+10  3.893518e+10  3.225142e+10
...                  ...           ...           ...           ...  ...           ...           ...           ...           ...
2021-11-22  4.851034e+10  6.454539e+10  3.178177e+10  7.108912e+10  ...  1.073903e+11  4.175263e+10  6.518791e+10  2.937961e+10
2021-11-23  4.727562e+10  6.298360e+10  3.187473e+10  7.017166e+10  ...  1.086315e+11  4.224230e+10  6.532881e+10  2.843048e+10
2021-11-24  4.667566e+10  6.206490e+10  3.153388e+10  7.028287e+10  ...  1.092141e+11  4.271798e+10  6.326233e+10  2.985586e+10
2021-11-25  4.659740e+10  6.453227e+10  3.159068e+10  7.013459e+10  ...  1.091381e+11  4.279726e+10  6.298054e+10  3.005144e+10
2021-11-26  4.405841e+10  6.358732e+10  3.132214e+10  6.882791e+10  ...  1.026661e+11  3.918302e+10  6.072620e+10  2.859604e+10
[233 rows x 49 columns]
import yfinance as yf
import pandas as pd
from multiprocessing.pool import ThreadPool
from functools import partial
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
start_date = "2021-01-04"
end_date = "2021-11-29"
# download data
idx = "^STOXX50E"
Index = yf.download(idx, # ticker
interval="1d", # daily frequency
start=start_date, end=end_date) # sampling period
Index = pd.DataFrame(Index['Adj Close'].rename(idx)) # select adjusted close price
page = pd.read_html('https://en.wikipedia.org/wiki/EURO_STOXX_50')
constituents = page[2]['Ticker'] # we only need tickers
constituents.pop(46) # Ticker UMG.AS is removed because otherwise the for loop produces an error
data = yf.download(
tickers = ' '.join(constituents),
interval='1d',
start = start_date,
end = end_date,
group_by = 'ticker',
adjust=False,
threads = True,
proxy = None
)
def process_prc(data, constituent):
prc = pd.DataFrame(data[constituent]['Adj Close']) # select adjusted close price only
prc.columns = [constituent] # rename the column with the ticker of the stock

return prc
def process_constituent(data, constituent):
prc = pd.DataFrame(data[constituent]['Adj Close']) # select adjusted close price only
prc.columns = [constituent] # rename the column with the ticker of the stock
stk = yf.Ticker(constituent)
try:
stk.info['floatShares']
except:
stk.info['floatShares'] = None
try:
stk.info['sharesOutstanding']
except:
stk.info['sharesOutstanding'] = None
if stk.info['floatShares']:
mcap = prc * stk.info['floatShares']
elif stk.info['sharesOutstanding']:
mcap = prc * stk.info['sharesOutstanding']
else:
mcap = prc * ((stk.info['marketCap'])/(stk.info['previousClose']))
return mcap

def process_dfprc(constituents):
pool = ThreadPool(len(constituents))
for idx, prc in enumerate(pool.imap(partial(process_prc, data), constituents)):
try:
df_prc = pd.concat([df_prc, prc], axis=1) # if the dataframe already exists, join the newly downloaded data to the existing table
except:
df_prc = prc # create the dataframe for the first ticker
return df_prc 
def process_constituents(constituents):
# Download all the tickers:
pool = ThreadPool(len(constituents))
for idx, mcap in enumerate(pool.imap(partial(process_constituent, data), constituents)):
#if idx == 0:
# df_mcap = mcap
#else:
# df_mcap = pd.concat([df_mcap, mcap], axis=1)
try:
df_mcap = pd.concat([df_mcap, mcap], axis=1)
except:
df_mcap = mcap
return df_mcap

page = pd.read_html('https://en.wikipedia.org/wiki/EURO_STOXX_50')
constituents = page[2]['Ticker'] # we only need tickers
constituents.pop(46) # Ticker UMG.AS is removed because otherwise the for loop produces an error

计算df_mcap:

if __name__ == '__main__':
df_mcap = process_constituents(constituents)
df_mcap

打印:

ADS.DE  ADYEN.AS    AD.AS   AI.PA   AIR.PA  ALV.DE  ABI.BR  ASML.AS CS.PA   BAS.DE  ... SAF.PA  SAN.PA  SAP.DE  SU.PA   SIE.DE  STLA.MI TTE.PA  DG.PA   VOW.DE  VNA.DE
Date                                                                                    
2021-01-04  5.083322e+10    4.880933e+10    2.414267e+10    6.200227e+10    6.001130e+10    7.936595e+10    5.306992e+10    1.647683e+11    3.507867e+10    5.679746e+10    ... 4.005571e+10    8.460465e+10    1.080643e+11    6.363292e+10    9.197665e+10    2.174885e+10    8.763420e+10    3.746300e+10    3.842743e+10    3.316382e+10
2021-01-05  4.983515e+10    4.800875e+10    2.403104e+10    6.134340e+10    5.997124e+10    7.855080e+10    5.304209e+10    1.650319e+11    3.506423e+10    5.636858e+10    ... 4.014193e+10    8.459394e+10    1.077770e+11    6.303187e+10    9.178897e+10    2.169038e+10    8.994003e+10    3.682896e+10    3.849667e+10    3.332026e+10
2021-01-06  5.019652e+10    4.548888e+10    2.411223e+10    6.147971e+10    6.019823e+10    8.263458e+10    5.451703e+10    1.633893e+11    3.656208e+10    5.896818e+10    ... 4.010744e+10    8.407989e+10    1.082285e+11    6.478275e+10    9.530789e+10    2.123436e+10    9.389289e+10    3.824197e+10    3.886594e+10    3.197940e+10
2021-01-07  4.964585e+10    4.500328e+10    2.407163e+10    6.195684e+10    5.983105e+10    8.195529e+10    5.417381e+10    1.638151e+11    3.678766e+10    5.987848e+10    ... 3.993501e+10    8.323385e+10    1.072435e+11    6.611552e+10    9.720029e+10    2.161438e+10    9.491911e+10    3.830537e+10    3.946601e+10    3.177828e+10
2021-01-08  5.078160e+10    4.610573e+10    2.400059e+10    6.232034e+10    6.015150e+10    8.221501e+10    5.367288e+10    1.687430e+11    3.675157e+10    6.002728e+10    ... 4.012468e+10    8.437975e+10    1.089467e+11    6.682110e+10    9.696569e+10    2.121390e+10    9.498246e+10    3.879449e+10    3.893518e+10    3.219170e+10
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2021-11-22  4.851034e+10    6.454539e+10    3.178177e+10    7.108912e+10    7.262242e+10    8.481195e+10    4.905974e+10    3.047505e+11    4.871214e+10    5.686775e+10    ... 3.862038e+10    9.936060e+10    1.269160e+11    8.638617e+10    1.251472e+11    3.187450e+10    1.074238e+11    4.175263e+10    6.518791e+10    2.937961e+10
2021-11-23  4.727562e+10    6.298360e+10    3.187473e+10    7.017166e+10    7.361048e+10    8.489549e+10    4.868553e+10    2.879491e+11    4.890396e+10    5.780438e+10    ... 3.883494e+10    9.827092e+10    1.247044e+11    8.521374e+10    1.230764e+11    3.105655e+10    1.086654e+11    4.224230e+10    6.532881e+10    2.843048e+10
2021-11-24  4.667566e+10    6.206490e+10    3.153388e+10    7.028287e+10    7.441161e+10    8.483284e+10    4.900361e+10    2.891317e+11    4.899028e+10    5.683102e+10    ... 3.892492e+10    9.708117e+10    1.240785e+11    8.322063e+10    1.219527e+11    3.068774e+10    1.092482e+11    4.271798e+10    6.326233e+10    2.985586e+10
2021-11-25  4.659740e+10    6.453227e+10    3.159068e+10    7.013459e+10    7.494570e+10    8.464487e+10    5.084663e+10    2.899473e+11    4.885600e+10    5.657391e+10    ... 3.898721e+10    9.634731e+10    1.249965e+11    8.351906e+10    1.232691e+11    3.050516e+10    1.091722e+11    4.279726e+10    6.298054e+10    3.005144e+10
2021-11-26  4.405841e+10    6.358732e+10    3.132214e+10    6.882791e+10    6.633355e+10    7.996257e+10    4.789032e+10    2.795891e+11    4.646787e+10    5.317635e+10    ... 3.498675e+10    9.452378e+10    1.201978e+11    8.077986e+10    1.165751e+11    2.842012e+10    1.026981e+11    3.918302e+10    6.072620e+10    2.859604e+10
233 rows × 49 columns

计算df_prc:

if __name__ == '__main__':
df_prc = process_dfprc(constituents)
df_prc

打印:

ADS.DE  ADYEN.AS    AD.AS   AI.PA   AIR.PA  ALV.DE  ABI.BR  ASML.AS CS.PA   BAS.DE  ... SAF.PA  SAN.PA  SAP.DE  SU.PA   SIE.DE  STLA.MI TTE.PA  DG.PA   VOW.DE  VNA.DE
Date                                                                                    
2021-01-04  292.307343  1859.5  23.374092   133.809341  89.889999   190.011627  56.726482   404.039764  18.287489   61.853455   ... 115.747612  76.089233   103.588997  119.404495  114.593018  11.912073   34.584999   80.331764   163.641632  57.650417
2021-01-05  286.568085  1829.0  23.266014   132.387405  89.830002   188.060059  56.696735   404.686218  18.279963   61.386387   ... 115.996742  76.079597   103.313599  118.276649  114.359184  11.880051   35.494999   78.972191   163.936478  57.922352
2021-01-06  288.646088  1733.0  23.344616   132.681595  90.169998   197.837112  58.273296   400.658264  19.060837   64.217407   ... 115.897095  75.617287   103.746368  121.562111  118.743378  11.630281   37.055000   82.002113   165.509003  55.591476
2021-01-07  285.479584  1714.5  23.305313   133.711288  89.620003   196.210800  57.906425   401.702545  19.178438   65.208740   ... 115.398827  74.856400   102.802139  124.062988  121.101105  11.838422   37.459999   82.138069   168.064377  55.241844
2021-01-08  292.010498  1756.5  23.236538   134.495789  90.099998   196.832611  57.370987   413.786438  19.159622   65.370781   ... 115.946915  75.886971   104.434860  125.386978  120.808823  11.619075   37.485001   83.186890   165.803864  55.960529
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2021-11-22  278.950012  2459.0  30.770000   153.419998  108.779999  203.050003  52.439999   747.299988  25.395000   61.930000   ... 111.599998  89.360001   121.660004  162.100006  155.919998  17.458000   42.395000   89.529999   277.600006  51.072109
2021-11-23  271.850006  2399.5  30.860001   151.440002  110.260002  203.250000  52.040001   706.099976  25.495001   62.950001   ... 112.220001  88.379997   119.540001  159.899994  153.339996  17.010000   42.884998   90.580002   278.200012  49.422203
2021-11-24  268.399994  2364.5  30.530001   151.679993  111.459999  203.100006  52.380001   709.000000  25.540001   61.889999   ... 112.480003  87.309998   118.940002  156.160004  151.940002  16.808001   43.115002   91.599998   269.399994  51.900002
2021-11-25  267.950012  2458.5  30.584999   151.360001  112.260002  202.649994  54.349998   711.000000  25.469999   61.610001   ... 112.660004  86.650002   119.820000  156.720001  153.580002  16.708000   43.084999   91.769997   268.200012  52.240002
2021-11-26  253.350006  2422.5  30.325001   148.539993  99.360001   191.440002  51.189999   685.599976  24.225000   57.910000   ... 101.099998  85.010002   115.220001  151.580002  145.240005  15.566000   40.529999   84.019997   258.600006  49.709999
233 rows × 49 columns

相关内容

  • 没有找到相关文章

最新更新