我写了一个C代码,如下所示:
#include <stdio.h>
#define N 19
int main(void){
int a[N];
int ans = 0;
for(int i = 0; i < N; ++i){
a[i] = 0;
}
for(;;){
int i;
++ans;
for(i = N - 1; a[i] == 2; --i){
if(i == 0){
printf("%dn", ans);
return 0;
}else{
a[i] = 0;
}
}
++a[i];
}
}
这将统计从0到2选择N(=19(个数字的方式,并打印方式的数量(=3^19=1162261467(。
我用gcc编译了这段代码-O1比-O2快。为什么-O2优化比-O1差?
- CPU:Intel(R(Core(TM(i7-8565U,x86_64
- 操作系统:Arch Linux(5.9.1-arch1-1(
- 编译器:gcc(gcc(10.2.0
编辑:
使用-S选项运行gcc生成以下程序集代码:-O1
.file "a.c"
.text
.section .rodata.str1.1,"aMS",@progbits,1
.LC0:
.string "%dn"
.text
.globl main
.type main, @function
main:
.LFB11:
.cfi_startproc
subq $104, %rsp
.cfi_def_cfa_offset 112
movq %fs:40, %rax
movq %rax, 88(%rsp)
xorl %eax, %eax
movq %rsp, %rax
leaq 76(%rsp), %rdx
.L2:
movl $0, (%rax)
addq $4, %rax
cmpq %rdx, %rax
jne .L2
movl $0, %esi
jmp .L7
.L4:
movslq %edx, %rdx
addl $1, %ecx
movl %ecx, (%rsp,%rdx,4)
.L7:
addl $1, %esi
movl 72(%rsp), %ecx
leaq 68(%rsp), %rax
movl $18, %edx
cmpl $2, %ecx
jne .L4
.L5:
movl $0, 4(%rax)
subl $1, %edx
movl (%rax), %ecx
cmpl $2, %ecx
jne .L4
subq $4, %rax
testl %edx, %edx
jne .L5
leaq .LC0(%rip), %rdi
movl $0, %eax
call printf@PLT
movq 88(%rsp), %rax
subq %fs:40, %rax
jne .L14
movl $0, %eax
addq $104, %rsp
.cfi_remember_state
.cfi_def_cfa_offset 8
ret
.L14:
.cfi_restore_state
call __stack_chk_fail@PLT
.cfi_endproc
.LFE11:
.size main, .-main
.ident "GCC: (GNU) 10.2.0"
.section .note.GNU-stack,"",@progbits
-O2
.file "a.c"
.text
.section .rodata.str1.1,"aMS",@progbits,1
.LC0:
.string "%dn"
.section .text.startup,"ax",@progbits
.p2align 4
.globl main
.type main, @function
main:
.LFB11:
.cfi_startproc
subq $104, %rsp
.cfi_def_cfa_offset 112
movl $9, %ecx
xorl %esi, %esi
movq %fs:40, %rax
movq %rax, 88(%rsp)
xorl %eax, %eax
movq %rsp, %rdx
movq %rdx, %rdi
rep stosq
movl $0, (%rdi)
leaq 68(%rsp), %rdi
.L6:
movl 72(%rsp), %ecx
addl $1, %esi
movq %rdi, %rax
movl $18, %edx
cmpl $2, %ecx
je .L4
jmp .L3
.p2align 4,,10
.p2align 3
.L5:
subq $4, %rax
testl %edx, %edx
je .L14
.L4:
movl (%rax), %ecx
movl $0, 4(%rax)
subl $1, %edx
cmpl $2, %ecx
je .L5
.L3:
movslq %edx, %rdx
addl $1, %ecx
movl %ecx, (%rsp,%rdx,4)
jmp .L6
.p2align 4,,10
.p2align 3
.L14:
xorl %eax, %eax
leaq .LC0(%rip), %rdi
call printf@PLT
movq 88(%rsp), %rax
subq %fs:40, %rax
jne .L15
xorl %eax, %eax
addq $104, %rsp
.cfi_remember_state
.cfi_def_cfa_offset 8
ret
.L15:
.cfi_restore_state
call __stack_chk_fail@PLT
.cfi_endproc
.LFE11:
.size main, .-main
.ident "GCC: (GNU) 10.2.0"
.section .note.GNU-stack,"",@progbits
基准是:
$ gcc a.c -O1
$ time ./a.out
1162261467
real 0m0.895s
user 0m0.894s
sys 0m0.000s
$ time ./a.out
1162261467
real 0m0.912s
user 0m0.911s
sys 0m0.000s
$ time ./a.out
1162261467
real 0m0.925s
user 0m0.924s
sys 0m0.001s
$ gcc a.c -O2
$ time ./a.out
1162261467
real 0m1.570s
user 0m1.568s
sys 0m0.000s
$ time ./a.out
1162261467
real 0m1.567s
user 0m1.562s
sys 0m0.004s
$ time ./a.out
1162261467
real 0m1.576s
user 0m1.568s
sys 0m0.001s
$ gcc a.c -O3
$ time ./a.out
1162261467
real 0m1.613s
user 0m1.612s
sys 0m0.000s
$ time ./a.out
1162261467
real 0m1.608s
user 0m1.599s
sys 0m0.003s
$ time ./a.out
1162261467
real 0m1.628s
user 0m1.628s
sys 0m0.000s
$ gcc a.c -Ofast
$ time ./a.out
1162261467
real 0m1.571s
user 0m1.570s
sys 0m0.001s
$ time ./a.out
1162261467
real 0m1.604s
user 0m1.595s
sys 0m0.004s
$ time ./a.out
1162261467
real 0m1.616s
user 0m1.613s
sys 0m0.000s
$ gcc a.c -O0
$ time ./a.out
1162261467
real 0m2.457s
user 0m2.456s
sys 0m0.001s
$ time ./a.out
1162261467
real 0m2.526s
user 0m2.525s
sys 0m0.000s
$ time ./a.out
1162261467
real 0m2.565s
user 0m2.565s
sys 0m0.000s
编辑:
我编辑的代码是这样的:
#include <stdio.h>
#define N 19
volatile int answer;
int main(void){
int a[N];
int ans = 0;
for(int i = 0; i < N; ++i){
a[i] = 0;
}
for(;;){
int i;
++ans;
for(i = N - 1; a[i] == 2; --i){
if(i == 0){
answer = ans;
return 0;
}else{
a[i] = 0;
}
}
++a[i];
}
}
再次测量:
$ gcc a.c -O1
$ time ./a.out
real 0m0.924s
user 0m0.924s
sys 0m0.000s
$ time ./a.out
real 0m0.950s
user 0m0.949s
sys 0m0.000s
$ time ./a.out
real 0m0.993s
user 0m0.989s
sys 0m0.004s
$ gcc a.c -O2
$ time ./a.out
real 0m1.637s
user 0m1.636s
sys 0m0.000s
$ time ./a.out
real 0m1.661s
user 0m1.656s
sys 0m0.004s
$ time ./a.out
real 0m1.656s
user 0m1.654s
sys 0m0.001s
编辑:
我在for(;;)
:之后添加了[[likely]]
属性
#include <stdio.h>
#define N 19
int main(void){
int a[N];
int ans = 0;
for(int i = 0; i < N; ++i){
a[i] = 0;
}
for(;;) [[likely]] {
int i;
++ans;
for(i = N - 1; a[i] == 2; --i){
if(i == 0){
printf("%dn", ans);
return 0;
}else{
a[i] = 0;
}
}
++a[i];
}
}
然后,基准测试的结果发生了变化:
$ g++ a.cpp -O1
$ for i in {1..5}; do time ./a.out; done
1162261467
./a.out 0.65s user 0.00s system 99% cpu 0.653 total
1162261467
./a.out 0.65s user 0.00s system 99% cpu 0.657 total
1162261467
./a.out 0.66s user 0.00s system 99% cpu 0.656 total
1162261467
./a.out 0.66s user 0.00s system 99% cpu 0.665 total
1162261467
./a.out 0.66s user 0.00s system 99% cpu 0.660 total
$ g++ a.cpp -O2
$ for i in {1..5}; do time ./a.out; done
1162261467
./a.out 0.66s user 0.00s system 99% cpu 0.661 total
1162261467
./a.out 0.65s user 0.00s system 99% cpu 0.648 total
1162261467
./a.out 0.66s user 0.00s system 99% cpu 0.659 total
1162261467
./a.out 0.65s user 0.00s system 99% cpu 0.654 total
1162261467
./a.out 0.66s user 0.00s system 99% cpu 0.657 total
-O2和-O1一样快!谢谢你@橡子。
为什么-O2优化比-O1差?
在大多数情况下,更高的优化级别应该会给您带来更好的性能。尽管如此,你可能会发现像这样的例外情况。尤其是像这样的微型基准测试。
程序使用的代码和数据内存非常小,缓存和内存访问不太可能成为问题。然而,它的分支很重,这意味着它将归结为静态和动态分支预测。
如果你的编译器弄错了,比如在这种情况下,你可以尝试用可能/不可能的提示或分析程序来给它更多的信息。
-O2除了打开O1之外还打开许多选项,例如-falign-functions -falign-jumps -falign-labels -falign-loops
。它们中的每一个似乎都对-O1的性能产生了负面影响。我有i7-8550U和GCC 9.3.0-17ubuntu1~20.04。
我相信分支预测失败会让处理器很难做到这一点。