JAVACV cvResize类型断言失败



我正在尝试实现一个汽车牌照检测器。

我设法找到了轮廓,并把它们画在IplImage上,我解剖了盘子里的数字。我将解剖图像存储在一个名为numbers的数组中,我试图将它们与存储在digits

中的工作目录中的源文件相匹配。

现在当我尝试使用cvMatchTemplate时,我得到一个类型错误:断言失败(src.type() == dst.type())在cvResize

我张贴的代码是相当长的,但错误是当我试图调整大小…

  public static String recognize(IplImage a){
        String plate = "";
        cvSaveImage("platebig.jpg",a);
        CvRect r = new CvRect();
        r.x(0);
        r.y(0);
        r.width(a.width()/2+50);
        r.height(a.height()/2+30);
        cvSetImageROI(a, r);
        IplImage cropped = cvCreateImage(cvGetSize(a), a.depth(), a.nChannels());
        cvCopy(a, cropped);
        IplImage tmp = cvCreateImage(cvGetSize(cropped), IPL_DEPTH_8U, 1);
        cvCvtColor(cropped, tmp, CV_BGR2GRAY);
        cvSmooth(tmp, tmp, CV_GAUSSIAN, 11, 11, 0.2f, 0.1f);
        cvEqualizeHist(tmp, tmp);
        cvThreshold(tmp, tmp, 128, 255, CV_THRESH_BINARY_INV);
        cvDilate(tmp,tmp,null,2);
        //cvCanny(tmp, tmp, 100, 50, 3);
        IplImage [] numbers = new IplImage[7];
        int i = 0;
        CvMemStorage storage = cvCreateMemStorage(0);
        CvSeq contour = new CvSeq(null);
        CvMemStorage storage2 = cvCreateMemStorage(0);
        CvSeq contour2 = new CvSeq(null);
        cvFindContours( tmp, storage, contour, Loader.sizeof(CvContour.class),
                CV_RETR_TREE, CV_CHAIN_APPROX_NONE, cvPoint(0, 0) );
        int [] sorter = new int[7];
        CvSeq contourLow=cvApproxPoly(contour, Loader.sizeof(CvContour.class), storage,CV_POLY_APPROX_DP,1,1);
        for( ; contourLow != null; contourLow = contourLow.h_next() ){
            CvRect rect;
            rect=cvBoundingRect(contourLow);
            if(i<7&&rect.width()>30&&rect.height()>30)
            {
                numbers[i] = IplImage.create(rect.width(),  
                        rect.height(), cropped.depth(), cropped.nChannels());
                cvSetImageROI(cropped, rect);
                cvCopy(cropped, numbers[i]);
                IplImage batata = cvCreateImage(cvGetSize(numbers[i]), IPL_DEPTH_8U, 1);
                cvCvtColor(numbers[i], batata, CV_BGR2GRAY);
                cvSmooth(batata, batata, CV_GAUSSIAN, 11, 11, 0.2f, 0.1f);
                cvEqualizeHist(batata, batata);
                cvThreshold(batata, batata, 128, 255, CV_THRESH_BINARY_INV);
                cvDilate(batata,batata,null,2);
                cvCanny(numbers[i],batata,10,100,3);
                cvFindContours( batata, storage2, contour2, Loader.sizeof(CvContour.class),
                        CV_RETR_TREE, CV_CHAIN_APPROX_NONE, cvPoint(0, 0) );
                CvSeq contourLow1=cvApproxPoly(contour2, Loader.sizeof(CvContour.class), storage2,CV_POLY_APPROX_DP,1,1);
                for( ; contourLow1 != null; contourLow1 = contourLow1.h_next())
                {
                    CvScalar color = CV_RGB( 255,0,0);
                    cvSetImageROI(cropped, rect);
                    cvDrawContours(cropped, contourLow1, color, CV_RGB(255,0,0), 127,1,8);
                }
                r.x(8);
                r.y(62);
                r.width(52);
                r.height(126-62);
                numbers[0] = cvCreateImage(cvSize(r.width(), r.height()), cropped.depth(), cropped.nChannels());
                cvSetImageROI(cropped, r);
                cvCopy(cropped, numbers[0]);
                r.x(79);
                r.y(20);
                r.width(146-79);
                r.height(126-20);
                numbers[1] = cvCreateImage(cvSize(r.width(), r.height()), cropped.depth(), cropped.nChannels());
                cvSetImageROI(cropped, r);
                cvCopy(cropped, numbers[1]);
                r.x(161);
                r.y(20);
                r.width(224-161);
                r.height(126-20);
                numbers[2] = cvCreateImage(cvSize(r.width(), r.height()), cropped.depth(), cropped.nChannels());
                cvSetImageROI(cropped, r);
                cvCopy(cropped, numbers[2]);
                r.x(237);
                r.y(20);
                r.width(306-237);
                r.height(126-20);
                numbers[3] = cvCreateImage(cvSize(r.width(), r.height()), cropped.depth(), cropped.nChannels());
                cvSetImageROI(cropped, r);
                cvCopy(cropped, numbers[3]);
                r.x(316);
                r.y(20);
                r.width(385-316);
                r.height(126-20);
                numbers[4] = cvCreateImage(cvSize(r.width(), r.height()), cropped.depth(), cropped.nChannels());
                cvSetImageROI(cropped, r);
                cvCopy(cropped, numbers[4]);
                r.x(395);
                r.y(20);
                r.width(464-395);
                r.height(126-20);
                numbers[5] = cvCreateImage(cvSize(r.width(), r.height()), cropped.depth(), cropped.nChannels());
                cvSetImageROI(cropped, r);
                cvCopy(cropped, numbers[5]);
                r.x(470);
                r.y(20);
                r.width(544-470);
                r.height(126-20);
                numbers[6] = cvCreateImage(cvSize(r.width(), r.height()), cropped.depth(), cropped.nChannels());
                cvSetImageROI(cropped, r);
                cvCopy(cropped, numbers[6]);
                sorter[i] = rect.x();
                i++;
            }
        }

        IplImage [] digits = new IplImage[11];
        for(int j = 0;j<10;j++){
            String str = j +".jpg";
            IplImage temp = cvLoadImage(str,CV_LOAD_IMAGE_COLOR);
            digits[j] = IplImage.create(temp.width(),   
                    temp.height(), IPL_DEPTH_32F, 3);
            cvConvertScale(temp, digits[j]);
        }
        digits[10] = cvLoadImage("o.jpg");

        for(int k =1;k<7;k++){
            double max = 0;
            int index = 0;
            for(int w = 0;w<10;w++){
                IplImage temp = IplImage.create(1,1, IPL_DEPTH_32F, 3);
                cvZero(temp);
                IplImage res = IplImage.create(digits[w].width(),digits[w].height(), digits[w].depth(), 3);
                cvResize(numbers[k], res);  

                cvMatchTemplate(digits[w], res, temp, CV_TM_CCOEFF); 

Resize()可能会抛出错误,因为源和目标的bit_type不相同。查看两者的图像通道/深度类型,比较它们,可能会解决您的问题。

使用cvConvert将有助于同时转换图像深度和nchannels。这将解决cvResize()的问题,因为两个图像必须具有相同的深度和通道数。

IplImage a = IplImage.create(img.width(), img.height(), img.depth(), img.nchannels());
cvConvert(img,a);

相关内容

  • 没有找到相关文章

最新更新