我收集了大约50条湖泊记录。下面是一个示例文档
{
"_id" : NumberLong(4253223),
"locId" : 59,
"startIpNum" : NumberLong("3287940726"),
"endIpNum" : NumberLong("3287940761"),
"maxmind_location" : {
"locId" : 59,
"country" : "DK",
"region" : "",
"city" : "",
"postalCode" : "",
"latitude" : "56.0000",
"longitude" : "10.0000",
"metroCode" : "",
"areaCode" : "n"
}
}
下面是我要执行的查询。我想从匹配条件中找到最后一条记录。
find({
$and: [
{startIpNum: { $lte: 459950297 }},
{endIpNum: { $gte: 459950297 }}
]
}).sort({_id : -1}).limit(1)
我在startIpNum
和endIpNum
上有分隔的升序索引。我已经用增量id值代替了_id
,像Mysql。
当我做查询没有sort
和limit 1
。它在0毫秒内给出结果。一旦我把sort
(我需要排序,因为我想要最后匹配的记录)查询得到永久挂起。
我也试过下面的查询,但它需要大约700毫秒。与复合
索引{startIpNum :1 , endIpNum : 1 , _id : -1 }
,排序_id
。
find({
startIpNum : { $lte: 459950297 },
endIpNum : { $gte: 459950297 }
}).sort({
startIpNum :1,
endIpNum :1 ,
_id : -1
}).limit(1).explain({ verbose : true});
我如何在第一种方法中实现排序。
解释如下。它仍然在扫描370061个索引
db.maxmind.find({startIpNum : { $lte: 459950297 }, endIpNum : { $gte: 459950297 } }).sort({startIpNum :1, endIpNum :1 , _id : -1 }).limit(1).hint("startIpNum_1_endIpNum_1__id_-1").explain( { verbose: true } );
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "yogeshTest.maxmind",
"indexFilterSet" : false,
"parsedQuery" : {
"$and" : [
{
"startIpNum" : {
"$lte" : 459950297
}
},
{
"endIpNum" : {
"$gte" : 459950297
}
}
]
},
"winningPlan" : {
"stage" : "LIMIT",
"limitAmount" : 0,
"inputStage" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"startIpNum" : 1,
"endIpNum" : 1,
"_id" : -1
},
"indexName" : "startIpNum_1_endIpNum_1__id_-1",
"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"startIpNum" : [
"[-inf.0, 459950297.0]"
],
"endIpNum" : [
"[459950297.0, inf.0]"
],
"_id" : [
"[MaxKey, MinKey]"
]
}
}
}
},
"rejectedPlans" : [ ]
},
"executionStats" : {
"executionSuccess" : true,
"nReturned" : 1,
"executionTimeMillis" : 433,
"totalKeysExamined" : 370061,
"totalDocsExamined" : 1,
"executionStages" : {
"stage" : "LIMIT",
"nReturned" : 1,
"executionTimeMillisEstimate" : 430,
"works" : 370062,
"advanced" : 1,
"needTime" : 370060,
"needFetch" : 0,
"saveState" : 2891,
"restoreState" : 2891,
"isEOF" : 1,
"invalidates" : 0,
"limitAmount" : 0,
"inputStage" : {
"stage" : "FETCH",
"nReturned" : 1,
"executionTimeMillisEstimate" : 420,
"works" : 370061,
"advanced" : 1,
"needTime" : 370060,
"needFetch" : 0,
"saveState" : 2891,
"restoreState" : 2891,
"isEOF" : 0,
"invalidates" : 0,
"docsExamined" : 1,
"alreadyHasObj" : 0,
"inputStage" : {
"stage" : "IXSCAN",
"nReturned" : 1,
"executionTimeMillisEstimate" : 410,
"works" : 370061,
"advanced" : 1,
"needTime" : 370060,
"needFetch" : 0,
"saveState" : 2891,
"restoreState" : 2891,
"isEOF" : 0,
"invalidates" : 0,
"keyPattern" : {
"startIpNum" : 1,
"endIpNum" : 1,
"_id" : -1
},
"indexName" : "startIpNum_1_endIpNum_1__id_-1",
"isMultiKey" : false,
"direction" : "forward",
"indexBounds" : {
"startIpNum" : [
"[-inf.0, 459950297.0]"
],
"endIpNum" : [
"[459950297.0, inf.0]"
],
"_id" : [
"[MaxKey, MinKey]"
]
},
"keysExamined" : 370061,
"dupsTested" : 0,
"dupsDropped" : 0,
"seenInvalidated" : 0,
"matchTested" : 0
}
}
},
"allPlansExecution" : [ ]
},
"serverInfo" : {
"host" : "cus360-H81M-S",
"port" : 27017,
"version" : "3.0.3",
"gitVersion" : "b40106b36eecd1b4407eb1ad1af6bc60593c6105"
},
"ok" : 1
}
在发布查询的db.collection.getIndexes()
和explain
的输出之前,让我们尝试以下操作。我怀疑的是你的{startIpNum :1 , endIpNum : 1 , _id : -1 }
不作为一个查询计划。
所以你可以尝试的是强迫MongoDB使用该索引的暗示:
find({
startIpNum : { $lte: 459950297 },
endIpNum : { $gte: 459950297 }
}).sort({
startIpNum :1,
endIpNum :1 ,
_id : -1
}).limit(1).hint({startIpNum :1 , endIpNum : 1 , _id : -1 })
目前,似乎您的查询获取所有匹配的文档,将它们加载到内存中,并在那里对它们进行排序。通过提示,使用您的索引,它将最初以正确的顺序选择文档。